|
Thing of beauty: Tutankhamun's Pectoral with desert glass scarab
|
In 1996 in the Egyptian Museum in Cairo, Italian mineralogist
Vincenzo de Michele spotted an unusual yellow-green gem in the middle
of one of Tutankhamun's necklaces.
The jewel was tested and found to be glass, but intriguingly it is older than the earliest Egyptian civilisation.
Working with Egyptian geologist Aly Barakat, they traced
its origins to unexplained chunks of glass found scattered in the sand
in a remote region of the Sahara Desert.
But the glass is itself a scientific enigma. How did it get to be there and who or what made it?
The BBC Horizon programme has reported an extraordinary new theory linking Tutankhamun's gem with a meteor.
Sky of fire
An Austrian astrochemist Christian Koeberl had
established that the glass had been formed at a temperature so hot that
there could be only one known cause: a meteorite impacting with Earth.
And yet there were no signs of a suitable impact crater, even in
satellite images.
American geophysicist John Wasson is another scientist
interested in the origins of the glass. He suggested a solution that
came directly from the forests of Siberia.
"When the thought came to me that it required a hot sky, I thought immediately of the Tunguska event," he told Horizon.
In 1908, a massive explosion flattened 80 million trees in Tunguska, Siberia.
Although there was no sign of a meteorite impact,
scientists now think an extraterrestrial object of some kind must have
exploded above Tunguska. Wasson wondered if a similar aerial burst
could have produced enough heat to turn the ground to glass in the
Egyptian desert.
Jupiter clue
The first atomic bomb detonation, at the Trinity site in
New Mexico in 1945, created a thin layer of glass on the sand. But the
area of glass in the Egyptian desert is vastly bigger.
Whatever happened in Egypt must have been much more powerful than an atomic bomb.
|
Boslough's specialism is modelling large impacts
|
A natural airburst of that magnitude was unheard of until, in 1994,
scientists watched as comet Shoemaker-Levy collided with Jupiter. It
exploded in the Jovian atmosphere, and the Hubble telescope recorded
the largest incandescent fireball ever witnessed rising over Jupiter's
horizon.
Mark Boslough, who specialises in modelling large impacts on supercomputers, created a simulation of a similar impact on Earth.
The simulation revealed that an impactor could indeed
generate a blistering atmospheric fireball, creating surface
temperatures of 1,800C, and leaving behind a field of glass.
"What I want to emphasise is that it is hugely bigger in
energy than the atomic tests," said Boslough. "Ten thousand times more
powerful."
Defence lessons
The more fragile the incoming object, the more likely these airborne explosions are to happen.
In Southeast Asia, John Wasson has unearthed the remains
of an event 800,000 years ago that was even more powerful and damaging
than the one in the Egyptian desert; one which produced multiple
fireballs and left glass over three hundred thousand square miles, with
no sign of a crater.
"Within this region, certainly all of the humans would
have been killed. There would be no hope for anything to survive," he
said.
Barakat holds up one of the many, huge chunks of glass in the desert
|
According to Boslough and Wasson, events similar to
Tunguska could happen as frequently as every 100 years, and the effect
of even a small airburst would be comparable to many Hiroshima bombs.
Attempting to blow up an incoming asteroid, Hollywood
style, could well make things worse by increasing the number of
devastating airbursts.
"There are hundreds of times more of these smaller
asteroids than there are the big ones the astronomers track," said Mark
Boslough. "There will be another impact on the earth. It's just a
matter of when."
Horizon: Tutunkhamun's Fireball, made by production company TV6, was broadcast on BBC Two on Thursday, 20 July
|